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The large eddy simulation of turbulent flows is discussed with particular attention
paid to the issue of commutation of differentiation and filtering. Multi-level adaptive
mesh refinementis proposed as a means of mostly avoiding commutation errors where
increased grid resolution is required to capture key flow features. The strategy is to
employ multiple uniform grids in a nested hierarchy using a constant-width filter for
each grid. Itis shown that commutivity of fine and coarse grid filters must be enforced
in order to consistently relate variables at different refinement levels. Methods for
treating fine grid boundaries and walls are also discussed. It is shown that errors
associated with boundary treatments are small and localizeds9s Academic Press
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1. INTRODUCTION

The Navier—Stokes (N-S) equations in Cartesian coordinates can be written in the
lowing conservation-law form

U  o9E 9F 9G

ﬁ+§+@+5_0’ (1)

whereU, E, F, andG are suitably defined vectors, representing the mass, moment
and energy equations [1]. Numerical solutions to the N—S equations typically utilize fir
difference or finite-series approximations to the partial derivatives, such approximat
being derived from a truncated Taylor series, polynomial fit, or some other series. At a
enough Reynolds number, the N-S equations admit solutions containing scales of r
that are smaller than the minimum practical grid spacing of any computational mes
such cases, discrete approximations to the partial derivatives in (1) will be unrelate

1 This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Liver
National Laboratory under Contract W-7405-Eng-48.
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the true derivatives, e.g., the grid spacing may exceed the radius of convergence of Te
series. Hence, in simulating high Reynolds number flows, only large-scale dynamics
be computed directly, small-scale eddies must be modeled; such calculations are refe
to as large eddy simulation (LES).

Thefirststep in performing a LES is to define large-scale variables which can be compt
on a given mesh. This theoretical separation of scales is usually accomplished by mean:
spatial filter. The filter attenuates high flow frequencies, resulting in a set of variables wh
can be well-represented on a discrete mesh with wavenumber support up to the Nyc
frequency. Equations governing these large-scale variables are derived by applying the
to the N-S equations. The resulting “resolved field” or “large eddy” equations differ fro
the N=S equations in two ways. First, the large-scale variables depend on the filter wi
i.e., the volume in space over which the dependent variables have been averaged. The
width is related to the cell size of the computational mesh. Second, the large eddy equat
contain extra subgrid-scale (sgs) terms, which arise when the filter is applied to prod
in E, F, andG. For example, filtering the advection term in the momentum equation giv
rise to the sgs Reynolds stress tensor. The focus of this paper is on the dependence
large-scale variables on the filter width. This dependence is important when the filter wi
changes in space and/or time. A change in grid spacing implies a change in filter wic
which leads to commutation errors between the filtering and differentiation operations.
example of how grid stretching affects the conservation equations is given in the Appen

Several recent works have commented on the errors associated with LES on nonunif
grids and have suggested various strategies for dealing with them. Ghosal and Moir
employed a nonlinear mapping procedure to relate a variable-width filter to a given fix
width filter by using the stretching function of a nonuniform grid. They demonstrated tt
commutation errors in the filtered N—S equations are second-order and, through spe
analysis, showed that such errors are almost purely dissipative. They also derived hi
order corrections that could be used to ensure that the commutation errors do not ex
numerical discretization errors. However, they noted that inclusion of such higher or
corrective terms increases the spatial order of the equations so that additional boun
conditions are needed for closure. H. van der Ven [9] derived a set of filters designe
commute with derivatives up to a specified order in the filter width; however, the filte
are restricted to unbounded or periodic flows. Fureby and Tabor [7] derived a gen
expression for errors associated with nonuniform filters which they applied to the N
equations to formulate the commutation error terms. They evaluated these terms f
channel flow in which the grid spacing was reduced near the walls. They found that, in
wall proximity, the errors were large with respect to advection and were of the order
the viscous contribution in the viscous sublayer. Vasilgeal. [10] suggested the use of
explicit filtering for LES, using discrete filtering operators which commute with numeric:
differentiation to a specified order. With this approach, an extra filtering operation mi
be performed after each time step and the form of the filter must be tied to the numer
differencing scheme.

The purpose of this work is to discuss how commutation errors can be mostly avoidec
employing a multi-level adaptive mesh refinement (AMR) technique, which is summariz
in Section 2. In Sectio 3 a rationale is given for choosing a Gaussian filter, based on |
invertibility. In Sectio 4 a consistency criterion is proposed for relating fine and coarse g
variables. Section 5 describes the treatment of grid boundaries. In Section 6, the mati
which must be inverted for inverse-filtering operations are shown to be well-condition
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Section 7 discusses the order of operations to be followed in using data at a given refine
levelto compute variables at a different level. In Section 8, errors associated with filtering
inverse-filtering across grid boundaries are quantified. Conclusions are given in Sectic

2. MULTI-LEVEL REFINEMENT

An optimal LES grid should provide adequate resolution throughout the computatic
domain without generating excessive commutation errors. In principle, both of these ot
tives could be achieved using a local adaptive mesh refinement (AMR) technique devel
by Berger and Oliger [4], Berger and Collela [3], and Balhl.[2]. The distiguishing fea-
ture of this technique is that the data exist at multiple refinement levels in space and 1
The flow variables are represented on a nested hierarchy of uniform grids with increasi
finer grids recursively embedded in coarser grids. The meshes are properly nested,
that boundaries of fine grids coincide with grid lines of underlying coarse grids.

An advantage of the multi-level approach to LES is that information on finer grids
available for modeling subgrid-scale terms on coarser grids. Furthermore, the uniformi
the grids allows for the use of a constant-width filter for extracting large-scale variables f
the primitive variables; hence, commutation errors are notanissue, exceptat grid bound
In using multiple grids for LES a self-consistent relationship must be established for the
variables at the various refinement levels. Another problem is how to treat grid boundz
in a manner consistent with a constant-width filter. The remainder of this paper will add
these problems.

3. CHOICE OF FILTER

Let fine grid variables be defined by means of an isotropic convolution filter of char
teristic width A, i.e.,

PX,t) =G x¢p = /RS G(Ix — X'|/A)p (X, t) dX, 2)

where the integral is over all three-dimensional space (even though the grid may cover
a subdomain oR?®). Similarly, let coarse grid varibles (with characteristic widif be
defined as

dx,H)=Gx¢p = /R3 G(Ix — X|/A)p (X, t) dx.. (3)

Assume thatp is transformable, e.g., periodic turbulence, Wit} denoting a Fourier
transform. By the convolution theorenf&{¢}=F{G}F{¢} and F{p}=F{G}F{¢}.
Furthermore,

Fig) = FIG « G x¢)) = FIG|F(G x ¢} = FIG)F(G}FIp) = FId):  (4)

therefore, the fine and coarse grid filters commuté- {6} # 0 for any wavenumber, then
(4) can be used to obtaif, giveng, or vice versa; e.g.,

e f{g}}
¢ = FUFIG)Fig)) = F {f{é} ,
N [ F)

$ = FUFIG)Flp)) = F {T{G}}'
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A logical choice then for the filter kernel is the Gaussian,

1 6
G= 1:[1 Z\/;exp[—G(xi —x)?/ A%, (5)

since its transfer function is positive definite, i.e.,

F{G) = /OO G(r/A) exp(—ikr) dr = exp[—(kA)?/24], (6)

o0

wherer = |x — X'| andk is the magnitude of the wavevector. The numerical factors in (
are such thaffooo G(r/A)dr =1, with the second moment & being the same as that of
a “top-hat” filter of widthA.

The Nyquist frequency for a computational mesh with grid spaiisg. = / h radians
per unit length Energy above the Nyquist frequency which is not removed by the filter wi
be aliased to lower wavenumbers by the discrete sampling of the grid. Therefore, it is de
able to choose a filter-to-grid-width ratlo= A / h which attenuates wavnumbers greatel
thank. as much as possible without removing too much energy from wavenumbers be
ke In Fig. 1, F{G} is plotted versugh for variousI'; the Nyquist frequency is indicated
by the vertical line. The plot suggests that by chooding 3, aliasing errors can be kept
to a minimum.
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FIG. 1. Transfer function for Gaussian filter with various filter-to-grid-width ratios.
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4. CONSISTENCY CRITERION

4.1. Continuous Case

A consistency criterion for relating fine and coarse variables is obtained by taking
inverse transform of (4), i.e.,

o 1 6 3/2 . - ,
0= rshs<n) /Ranp[‘&X—XI J(CR?1H (X, 1) dx
1 6\ %2 U -
~ 3h3 (n) /R3 exp[—6|x — x'[7/(C'h)“Jp (X', t) dX’ = ¢. @

For computational convenience, (7) may be splitinto a series of orthogonal one-dimens
operations, i.e.,

ﬁ/ exp[-6(x — x)2/(Th)Za (X, y, z t) dX

=h 1 " expl-6(x — X)?/(TAB(X, ¥, 2,1) X ®)

where
a(x,y, zt) =h /_ Z expl-6(y — ¥)?/(TM?6(x, Yy, z tydy, )
(x.y.zt)=h [ " expl-6(z— 2)2/(PAAg(x, y, 7, 1) dZ. (10)
B(x.y,zt) =h / : exp[-6(y — y)?/(Th?w(x. Y. z.t) dy., (11)
o(x.y.zt) =h /_ " expl6(z — 2)%/(T1A(x. y. Z. 1) d7. (12)

4.2. Discrete Case

Leti, j, andk be indices of the coarse grid, such thatih = Aih, y= jA= Ajh, and
z=kh= Akh, whereA = h/his the grid refinement ratio. Consider the case whiete?2.
The first step in discretizing (8)—(12) is to choose stencils of sufficient extent to evalt
the integrals. From a tabulation of the exponentials (see Table 1), it is apparent that virtt

TABLE |
Decay of Exponentials forT' =3 and A =2

[i—i’| exp[-6( —i")?/T?] exp[-6A2(i —i")?/T?]
0 1.0 1.0
1 0.5134171190 0.06948345120
2 0.06948345120 .33091010% 10°°
3 0.002478752177 .375134544¢ 1071
4 2.33091010% 10°° 2.951903147% 107%°
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all of the contributions to the integrals are taken into account by using a seven-point ste
for the integrals involvingy, 6, andg, and a three-point stencil for the integrals involving
B, w, and¢. The second step in the discretization is to give proper weighting to each of 1
points in the stencils. This is accomplished by fitting polynomials to the stencils and tf
evaluating the integrals analytically. The resulting set of discrete equations is (after divid
through by(hh)3(37/2)%/2)

3 1
Z an(@i—n,jk + Citnjk) = Z bn(Bi—n,jk + Bitn,jK)s (13)
n=0 n=0

3
ajjk = Zan(Gi,j—n.k+9i,j+n,k), (14)
n=0
3 —_— —
Ojk = Zan((pi,j,kfn + ®ijk+n) (15)
n=0
1
Bi.jk= an(wi,jfn,k+wi,j+n,k)v (16)
n=0
1 ~ ~
@ijk =Y ba(@i.jkn+ i jkin), 7
n=0
where
_ 33 243 81 19
~ 1536 17T 1024 27 2560 *~ 15360
13 3
bo = =, b = —.
0= 32 1T 32

This equation set is conservative, iEo_oah = Y n_obn=1/2.

5. BOUNDARY CONDITIONS

5.1. Internal Grids

When fine grids are embedded within coarse grids, the fine grid boundaries may
placed at arbitrary locations within the computational domain and may not coincide w
physical boundaries. The boundaries of grids embedded in this manner will
referred to as “free” boundaries. Support for filters extending past free boundaries
be provided by extrapolation or one-sided filtering. For example, let the x-boundar
of a fine grid be located d@t=0 andi =1 and suppose the underlying coarse grid ex
tends past these boundaries. At the nodesD, 1,2, | — 2,1 —1, andl, the coarse-grid
filter extends beyond the fine grid domain. For these near-boundary nodes, polync
als are constructed using only that portion of the seven-point stencil which lies witt
the domain of the fine grid. The integral involving is evaluated using the polyno-
mials based on these subsets of the full stencil. This leads to the conserva
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equations
7 15 3
2000k~ gLk + S02.jk = g3k = Yo,k
53 3 39 5 5
1280]k+32a11k+64 ik~ 35 3]k+128a4]k Y1jk
5 7 31 7 5
128 Qo jk + 32%%1 k+ 640!21k+ 37%30: k+ Tog4ik = Y2,jk
Mijk=vijk @=i=<Il-=3 (18)
5 7 31
H8WP4,j,k + 3_205I73,j,k + &alfz,j,k + 3_20llfl,j,k + 1280” ik =Vi-2jk
5 5 39 3 53
1oa%! 41k T %13 ]k + 5221k + 351 -Lik + Togh ik = Yi—1jk
3 3 15 7
—éal—&j,k + S -2k ~ g YLk + 2%k = Yiik
where
3
Mijk= Y an(injk+ itk (19)
n=0
and
1
Vijk = Z Pn(Bi—n,jk + Bitn,j K- (20)
h=0

The same procedure can be employed endz to close (14) and (15). If the underlying
coarse grid extends past all boundaries of the embedded fine grid, then the stencils rec
for computingw, 8, andyr are all part of the coarse grid domain.

5.2. Walls

For constant-width filters, wall-boundary conditions on filtered variables differ from thc
of unfiltered variables [7, 10]. This is a consequence of the filters extending beyond the ri
the computational domain. In order to provide support for constant-width filters in the vic
ity of walls, assume that the primitive variables can be defined outside the computati
domain by extending their boundary values into the wall. To illustrate, suppose a wa
located a = X, (i = 0) with X > Xo(i > 0) being the flow domain. Fot < X, ¢(X, Y, Z, 1)
and¢(x Y, Z, t) asymptote tap(xo, Yy, z,t). In the discrete caseh|<p/,\ i k—¢0] « and
Pi<r.jk= ¢o .k Wheregg | and¢0 | x are thep boundary conditions filtered tangentially
to the wall, i.e.,

gyZ(O’ ya Zv t)
6 [ [ _
= Zren2 / / exp—6[(y — Y)? + (z— 2)3/(Th) 3¢ (X0, Y, Z, 1) dZ dY,
$7%(0,y. 2. 1)

6 % poo i
~ xr?h? / / exp(—6[(y — ¥)? + (2= 2)7]/(Th)*)¢ (%o, ', Z, 1) dZ dY’.

In applying wall-boundary conditions to filtered variables, splines can be used to conl
flow-interior solutions to wall-interior boundary conditions. The filtered variables, whi
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are unknown ai = —1, are thus related to known values on either gide 2, i > 0). For
example, using_z2 j k —¢0J Ko €0, ks alj k, andeay j « to construct an interpolating poly-
nomial fora_y jk, and usingB_z j, k—¢01 » Bojk, and By jk to interpolate forf_y j k.
leads to

a_1jk = ;—245%/,21* +agjk— gal,j,k + %Olz,j,k, (21)
B-1jk= %J K+ gﬁo,j,k - %/31,1',1« (22)
For walls located at=0 andi = I, (13) becomes
15199 —, 2141 243 2349 19
107520701« T 307200k T 2560 L1k T 3584021 T 15360731
1., 15 3
= a%“ + 1—6/30,j,k + aﬂl,j,k
8441 —, 1377 16921 8667 81
537600 01 T 512071 T 38200"% 1 T 35802 1% T 2560731k
19
+ 1536041k T Vi
19 -, 101 757 | 49439 243
33600701k T 3072700k T 3500™ ik T 17520 ik T 1004 i
81 9
+ 25607 ik T 15307k = V2ik
Aijk = Vi jk B=<i=<l-=3 (23)
19 81 243 49439
15360 1% T 2560M 41k T 1024 21k T o750 21k
| 757 101
+ 3000 ikt 307 "k+33600¢' ik = Vi-2k
19 81 8667 16921
15360 1% T 2560" 31k T 35g40" 21k T 35400 ik
1377 8441 —
t a0kt 53760(?" ik = Vi-Lik
19 2349 243 2141 15199 —,
15360 ~*1* T 35gag" 21k T g5g0M Lk T 307 107520¢' ik

= 2 B B+ =]
B T VAR A
Similar closures can be applied for walls on other sides of the flow.

6. INVERTIBILITY OF MATRICES

Let the matrix ofe, 6, and ¢ coefficients for cases where the boundary condition:
are periodic, free—free, wall-wall, and wall-free be denotedAgy A¢, A,, and An,
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respectively. Similarly let the matrix of, w, and ¢ coefficients, for the same cases
be denoted byB,, B, B,, and By. These matrices are given for a seven poir

grid:

Am

r 353
768

243
1024

81
2560

19
15360

19
15360

2560

243
L 1024

H
w NN FNEN]
o o o 8‘“’ Bl 8|S

[ 2141
3072

1377
5120

101
3072

19
15360

2141
3072

1377
5120

101
3072

19
15360

0
0

0

243
1024

353
768

243
1024

81
2560

19
15360

19
15360

81
2560

2560

243
2560

16921
38400

757
3200

81
2560

19
15360

243
2560

16921
38400

757
3200

81
2560

0
0
0

81
2560

243
1024

353
768

243
1024

81
2560

19
15360

19
15360

2349
35840

8667
35840

49439
107520

243
1024

81
2560

19
15360

0

2349
35840

8667
35840

49439
107520

243
1024

S
128

S
128

0

19 19 81 243 ]
15360 15360 2560 1024
81 19 19 81
2560 15360 15360 2560
243 81 19 19
1024 2560 15360 15360
353 243 8l 19
768 1024 2560 15360 | ’
243 353 243 81
1024 768 1024 2560
81 243 353 243
2560 1024 768 1024
19 81 243 353
15360 2560 1024 768
, i
2 0 0 o0
5 5
» 1w O 0
7 5
% 1w O 0
353 243 81 19
768 1024 2560 15360 | °
7 3 1 5
32 64 32 128
_5 39 3 53
32 64 32 128
3 3 _15 7
8 2 8 4
19 7
15360 0 0 0
81 19
2560 15360 0 0
243 8 19 g
1024 2560 15360
353 243 81 19
768 1024 2560 15360 | °
243 49439 757 101
1024 107520 3200 3072
81 8667 16921 1377
2560 35840 38400 5120
19 2349 243 2141
15360 35840 2560 3072 J
19 7
15360 0 0 0
81 19
2560 15360 O 0
203 81 19
1024 2560 15360
353 243 81 19
768 1024 2560 15360 |
7 s 1 5
32 64 32 128
_5 3 3 53
32 64 32 128
3 3 _15 71
8 2 8 4
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26 3 0 0 0 0 3] (26 3 0 0 0 0 O
32630000 32630000
0 3263000 0 3263 000
Bp_sizooszesoo, Bf=§200326300,
0 00 32630 0 00 32 30
0000 3263 0000 3263
|3 0 0 0 0 3 26 (0 0 0 00 3 26
60 3 0 0 0 0 0] (60 3 0 0 0 0 O
6526 00 00 6526 00 00
0 656 00 0 0 656 000
Bw:6—1400652600, Bm=6i400652600.
0 00 656 0 000 656 0
0000 6526 0 00O 6526
(0 0 0 0 0 3 60 (0 0 00 0 6 52

The B matrices are all diagonally dominant, and hence, invertible. Ahmatrices are
not diagonally dominant; however, they are all well-conditioned, i.e., clp)dE 16.85,
cond(A;) =202.7, condd,,) = 15.48, and cond{y) = 182.6; hence, thé matrices are
also invertible.

7. METHODOLOGY

7.1. Using Coarse Grid Data to Initialize Fine Grids

The procedure for computing variables at a particular refinement level from variab
at anather level involves a filtering step and an inversion step. The process is outline
b= qb <~ q) where the computauon may proceed in either direction.

The first step in computing from ¢ is to calculatev, g, andyr using (17), (16), and (20);
closures such as (22) are used where walls are present. The second step is to combine
(14), and (15) with the appropriate boundary conditions and invert the system on the co
grid to obtainx, 6, andg. The third step is to interpolatgonto the fine grid. Interpolation
will, in general, introduce wavenumbers above the Nyquist frequency of the coarse grid (|
in the ranger/h < k < n/ﬁ). These frequencies will probably not be related to the highe
frequencies inp, which would remain after filtering the actual functipn Therefore, it is
recommended that interpolation onto the fine grid be done after the filter inversion, rat
than before, to avoid amplification of numerically generated wavenumbers. The ratior
here is similar to the reasoning behind the subgrid-scale estimation model of Domara
and Loh [5]. In their model, a deconvolution is performed to amplify wavenumbers ju
below the grid-scale cutoff, then a nonlinear operation is applied to the deconvolved fit
which generates higher frequencies for the estimated variable [6]. Such a model may
natural choice for an AMR calculation, since the deconvolution, used to initialize fine gric
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may also be used for subgrid-scale modeling on the finest grid. Subgrid-scale mode
coarser grids could be constructed by filtering products on embedded fine grids.

7.2. Using Fine Grid Data to Correct Coarse Grid Data

The first step in computing from qb_is to use (15), (14), and (19), in succession, t
computed; j k, @i jk, andi; jx at nodes where the filter stencils are entirely containe
within the domain of the fine grid. For the remaining nodes, pre-corrected valugsfer
used in (17), (16), and (20) to compute; «, Bi.j k. andy; j k= Ai,j k. The second step is
to combine (13), (16), and (17) with the appropriate boundary conditions and invert €
set, in succession to obtafh j k, wi j k, andéi,j,k. In performing the inversions, the off-
boundary and/or wall-boundary elements are moved to the left-hand side of the equat
This procedure ensures thatthe corrected solution will blend smoothly with the pre-corre
solution across fine grid boundaries.

8. ERROR ANALYSIS

Because the filter stencils change near grid boundaries, some errors can occur in
regions. In order to quantify errors associated with free boundaries, fine and coarse
filters were applied to sine waves of different wavelengths. The coarse grid represent
of each waveg) was then used to reconstru/?:bn a fine grid embedded within the coarse
grid. Figure 2 shows the results of this exercise. The agreement between the reconstr

<

0 2 4 6 8 10 12 14 16 18 20 22
|

FIG. 2. Fine-grid representations of various Fourier modes. The boundaries of the fine grid are locat
i =0 andi =23. The solid lines are the result of filterigg the circles are the result of invertigig



128 ANDREW W. COOK

FIG.3. Fine-and coarse-grid functions near a wall, locateaa. The true fine-grid solutiop was obtained
by filtering ¢, whereasp, was obtained by invertiné.

functions (circles) and the true functions (lines) is excellent. The errors are localized n
the boundaries and are only significant for modes close to the Nyquist frequency.

Results of filtering near a wall boundary are displayed in Fig. 3. keneds result from
filtering ¢ with the fine and coarse grid filters, respectively. The computed solytios
obtained by inverting). Once again, the agreement betweu_mndq&_C is very good except
in the high frequency case at the wall boundary.

9. CONCLUSIONS

By using multiple uniform grids (as opposed to grid stretching) to meet local resoluti
requirements, a single filter of constant width can be defined for each grid, thus ensu
commutivity of filtering and differentiation. This approach, however, introduces some ne
problems; namely, how to relate variables on embedded fine grids to variables on underl
coarse grids and how to provide support for filters near grid boundaries.

Consistency between fine and coarse grid variables can be ensured by enforcing con
tivity of fine and coarse grid filters. A method has been presented for computing a fine ¢
solution given a coarse grid solution and vice versa. The procedure involves a filtering s
to compute an intermediate quantity, followed by a deconvolution to obtain the function
a different refinement level. A Gaussian filter is used, because its transfer function ha:
zero crossings in wavenumber space, and hence, it is invertible.

In treating embedded grids, some errors occur near grid boundaries as a result of ch
ing the filter stencil in these regions. The errors are local and are very small unless t
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wavenumber modes are present. If wavenumbers close to the Nyquist frequency are de
by a subgrid-scale model, then it may be possible to place fine grids within turbulent flow
gions without generating significant boundary errors. However, shocks, material-interfe
and other high-frequency phenomena should not be allowed to cross grid boundaries

Wall-boundary conditions on filtered variables can be supplied by applying bound
values for the corresponding primitive variables at a distance of one filter width into
wall. This scheme is consistent with the use of a constant-width filter; however, it is suk
to interpolation error, since the flow at the wall must be matched to the boundary condit
applied inside the wall. These errors have been shown to be very small and highly loca
and are only significant when high frequency modes are in contact with the wall.

APPENDIX

Effect of Grid Stretching on Governing Equations

Assume a Cartesian mesh which may be stretched independentlyjrz, andt. Let
large-scale variables be defined as grid-cell averages of the primitive variables, i.e.,

_ 1 Xx+hx/2  py+hy/2  pz4+h,/2
¢(Xv y7 Z, t) = m / / / ¢(X,, y,, Z/, t) dZ’ dy dX/, (Al)
Xty X y z

—hy2 Jy—hy2 Jz—h,2

whereg is any variable¢7is its large-scale component, ahd(x, y, z, t), hy(X, y, z, 1),
andh;(x, y, z, t) are the grid spacings.
Applying (A.1) toaU/at, and using Leibnitz’s rule, results in

20 x+hx/2  py+hy/2  rz4+h;/2
U _ / ' / U, y WYL ZLY gy dy
y— z

ot h h h X—hy/2 hy/2

X+hx/2  py+hy/2 z+h,/2
= ux,y,z,t)dZ
o A R Y

3 |:8hz(xéty, Z, t):| |:U(X/’ y/’ Z— hz/2, t) ‘|2' U(X,, y” Z+ hz/Z, t):| } d)/ dx’.

hy/2

The last term is the trapezoidal formula for definite integrals. Application of the trapezoi
rule in reverse (including error) gives

m 1 x+hx/2  py+hy/2 z+h,/2
— = / / ux,y,z,t)dZ
y— z

ot hxhyhz x—hy/2 hy/2 —h;/2
ohz(x, Y, z,t)} { 1 } /Z+“Z/2 3
— Ux,y,z,t)dZ+0O(h dy dx
[ at h(X, ¥, 20 | | Jo=n, 2 .y, 2.0 (hz) 0¥
X+hy/2 y+hy/2 z+h,/2
= ux,y,z,t)ydZdy dx
hxh hz Jx—n, 2 /y hy/2 at J, hy/2 y Y

ah —  9h,
(m) ~ 5 O
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Repeating these procedures for thandx integrals yields

8U X+hy/2  py+hy/2  rz4hz/2
Ux,y,z,t)dZdy dx
ot hy h ho 9t Jx_hy2 /y hy/2 /z hy/2
ohy 1 ohy, 1 9h, 1 y ah,
—_——t—— 4+ —— U - (’) h O(h —0O(hy).
<8t he = dt hy  at hz> () = (hy) = 5 Oha)

Applying the product rule to the first term results in

U U 9 /X+h /2/y+hy/2/z+hz/z
ot Ux,y,z,t)dZdy dx
8t<hhh> y vz o2 y y

at ot hy /2
ohy 1 9hy 1 0dh, 1 dhy ahy oh;
— — (9 hy) — O(hy) — —0O(hy).
<8th Bthy+8thz> (h) = 5 Ohy) = 5 Oha)
(A.2)
Now,
1 ah;t hyt ah,t
e — h lh 1 h—lh—l h—lh—l X
at<hxhyhz) ot e Ty
_ ohy 1 ahy1+ah1 1
- at he ~ ot hy ' at hy ) hehyh,’
thus, the terms involvingoh, /9t)(1/ he) in (A.2) all cancel, and the result is
U 9U  ahy ahy ahZ
—=——-—"0(hy) — —0(h (’)h A.3
el (hy) Y (hy) — (hy). (A.3)
AveragingdE/ox yields
z+hz/2  py+hy/2 px4hy/2 9E t
< y XYL 2.0 4 dy d7
z—hz/2 Jy—hy/2 Jx—hy/2
z+hz/2  py+hy/2
/ [Ex+hy/2,y,Z,t) —E(X—hy/2,y,Z,t)]dy dZ.
h h h z—h;/2 Jy—hy/2
(A.4)

In order to relate this t6l§/8x, consider

z+hz/2  py+hy/2  px4hy/2
= Ex,y,Z,tydx dy dZ
ox x| hyhyhz J, p 2 /y hy/2 /x hy/2

1 z+h,/2  py+hy/2 px+hy/2
_( )/ / / E(X/’y/vz/1t)dx/d>/dz’
z y—hy/2 Jx—hy/2

hxhyh —hy/2
1 z+hz/2  py+hy/2  px4hy/2
EX,Y,Z,t)ydx dy dZ
hxh h, 3X/z hy/2 /y hy/2 /x hy/2

_ (w1 hy 1 oh, 1)
- ax hy ~ ax hy = 3x h,
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1 z+h,/2 3 y+hy/2  px4hy/2
+ / —/ / EX,Yy,Z,t)ydx dy dZ
hxhyhz | Jzon 2 90X Jy-ny2 Jx—ny2

ah, y+hy/2  px+hy/2
+—/ / Z[EX,Y,z—hy/2,t) + E(X, Y,z + hz/z,t)]dx’dy}
X Jy-ny2 Jx-ng2 2

hy 1 h, 1\ =
— 9y _l’_&__i_h_ E
xhX 0x hy ax hy

1 z+h;/2 ) y+hy/2  px+hy/2 ah 1
+ — Ex,y,Z,ydxdydZ + —=
h><hyhz /z—hz/z X /y—hy/z /x—hx/z y )/ ax h h h

y+hy/2  px4hy/2 1 z+h,/2 3
X e ExX,Y,Z,t)dZ +O(h
/yhy/z /xhx/z hz(X,y, zt) /th/Z ()
The second to last term cancels the third term; thus,
0E _ (oh 1 dhy 1)\ =
— = E
X (ax hy + ax h >

1 z+h,/2 y+hy/2  px+hy/2 3hz
+ / / EX,Y,Z,t)ydxXdy dZ + —O(h,).
hxhyh z—h,/2 8X y—hy/2 Jx—hyx/2 X ‘

dx' dy.

Repeating the above procedure §gpx of they integral yields

9E  ohy 1e 22 pythy/2 g pxh2
ax / / Ex,y,Z,tydx dy dZ
X 9% hx h h yhz Jzny2 Jy-ny 2 ax x—hy/2

hy@(hy) + XZO(hz).

Applying Leibnitz’s rule tod/ax of thex integral results in

9E _ ohy 1z 2+hz/2. py+hy/2 1ahy(X. Y. Z. 1)
o9& _ XS U VEx+hy/2, Y, 7, t
ax —  x hy hhh/zhz/z/yhy/z K ax ) X+h/2.y. 2.

(1 }ahx(x, Y, Z, t)> } ahy ah,

E(x—hy/2,y,Z,1) d)/dz’+—(’)(hy)+—(’)(hz)

2 X
8hx 1 _ Z+hz/2 Y+hy/2
_ 1o 1 / [EX +hy/2.y.Z.1)
X hy hy h hz Jz-hy2 Jy-n2 "
z+hz/2  ry+hy/2 3h b
hx h Ny Jony2 Jy-ny2
ohy

—[E(x he/2,y,Z, ) +E(Xx+hy/2,y, 7 t)]d)/dz'—l——(’)(hy)—i-—(?(hz)

ahX1E 9E 9h, 1 Z+hz/2/y+hv/2 1
y

X R4 Dy X = - -
X hy X ox hyhyh, z—h,/2 —hy/2 hy(X,y, z,t)

Xthy/2 IS o ’ 3 8hy 8hz
X / EX,y,Z,tydx + O(h}) | dy dZ + —=O(hy) + —O(h,).
x—hy/2 ax X
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Therefore,

_ E X 8hy ahz
- _ gomx) — B—XO(hy) O(hz)- (A.5)

aF  oF  ahy ahy dh,
— == hy) — —0O(hy) — —0O(h A.6
ay — oy ay O(hy) ay O(hy) ay O(hy) (A.6)
and
3G 3G  ahy ahy oh,
The large eddy equations thus become (summinig on
3U O9E oF oG  oh; ah; ah; ah;
— Yt —+— 4 — = 'O(h)+ 'O(h)+ 'O(h)+—'(9(h) (A.8)

ot ox 9y 0z

From (A.8) it is clear that changes in grid spacing give rise to unknown second-or¢
source terms in the governing equations. This has strong implications for simulations
nonuniform grids where the flow contains unresolved scales of motion. If grid distortio
are large, then the spatial derivatives on the right-hand side of (A.8) will contamin:
the solution. Additionally, if sudden changes are made to the grid during the course ¢
simulation (e.g., a remap in an arbitrary Lagrangian Eulerian (ALE) calculation), then t
temporal derivatives on the right-hand side of (A.8) will corrupt the results.

In the preceding derivation, the trapezoidal rule was used, in reverse, in order to re
certain integrals and thus obtain the large eddy equations in the same form as the
equations. This procedure gave rise to ¢hg;) terms in (A.3), (A.5), (A.6), and (A.7).
The exact expression for the error associated with the Trapezoidal rule is

(A.9)

s+he/2 d(E —h:/2) + ¢ (€ +he/2) h? 929 (n)
T_ / /_ E E
€ =/E $(€)dg hs( 2 )_ 12 92

7hg/2
forsomey € (£ —h: /2, £ + h:/2). The error vanishes for functions which are linear over the
region of integration, i.e., fa#2¢ (7)/dn? = 0. Therefore, if grid irregularities are restricted

to laminar regions of the flow, then the right-hand side of (A.8) will be negligible (assumit
the flow is well-resolved in such regions).
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